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19. Abstract

Abstract. "Peak; dver Threshold” ("POT") models commonly used e.g. in
hydrology. assume fhat pgék valueﬁ of an 1id or st~ -ionary sequence Xi above a
high value u, occur at Poisson points, and the ex: . values of the peak above
u are independent with an arbitrary common d.f. G. Motivation for these models
has been provided by R.L. Smith (cf. [7].[8]). by using Pareto-type
approximations of Pickands ([6]) for distributions of such excess values.

These works strongly suggest that the Pareto family provides the appropriate
class of distributions G for the POT model.

In the present paper we consider the point process of excess values of
peaks above a high level u and demonstrate that this converges in distribution
to a Compound Poisson Process as u — ® under appropriate assumptions. It is
shown that the multiplicity distribution of this limit (i.e. the limiting
distribution of excess values of peaks) must belong to the Pareto family and
detailed forms are given for the normalizing constants involved. This exhibits
the POT model specifically as a limit for the point process of excesses of

peaks and delineates the distributions involved.
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¥ paper me consider%she point process of excess values of
peaks above a high level u and demonstrate that this converges in distribution
to a Compound Poisson Process as u under d@ppropriate assumptions. It is
shown that the multiplicity distribution of this limit (i.e. the limiting
distribution of excess values of peaks) must belong to the Pareto family and
detailed forms are given for the normalizing constants involved. This exhibits

the POT model specifically as a limit for the point process of excesses of

peaks and delineates the distributions involved. [f{Qz

Research sponsored by the Air Force Office of Scientific Research Contract No.
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1. Introduction.

In what are sometimes called "Peaks over Threshold” (POT) models (cf.
[7]). the excess values over a high level u by an observed time series are
assumed to occur at Poisson points and to have arbitrary common distributions.
That is if {Xi: i=1,2,...} is e.g. a stationary (or iid) sequence, the
exceedance points {i: Xi > u} are assumed to be Poisson and the corresponding
excess values (Xi-u)+ to be independent with an arbitrary distribution.

The Poisson nature of the occurrence of exceedances is intuitively clear
since e.g. 1if X1 are iid with 4d.f. F, the number of exceedances of a high
level u by Xl.....Xn. is binomial with parameters (n, l—F(un)) and hence
approximately Poisson if n(l-F(un)) converges to some value T > 0. This will
be made more precise below by a time normalization. Further motivation for the
model is provided by R.L. Smith ([7].[8]) based on theory of Pickands [6],
restricting the distribution for excess values to a "generalized Pareto"” (GP)

form

(1.1) G, p(x) ~l/a

1 - (1 + ax/B) B>0, a# 0

-x/B

1-e B>0,a=0

o G
where the range of x is (0,®) if a0 and (0,-a "B) if a<O. >

This class is a flexible 2-parameter family, but more importantly for a

wide class of F’'s the excess distribution

1.2 F = - u X

( ) U(x) X $ xx> ) Accession For ’
NTIS GRA&I i

is approximately GP in a sense shown by Pickands [6], viz. | DTIC TAB O
Unannounced d
Justtification

(1.3) inf sup IFu(x) - G, B(x)l —0 asu—o»

p X ) By

Distribution/
Avallability Codes
Avall and/or
Dist Special

el




2
for some fixed a. That is for high levels u, B may be chosen (depending on u)
so that Ga,B(x) is uniformly close to Fu(x).
Write Xp for the right endpoint (sup{x: F(x) < 1} of the d.f. F and
F(x) = 1-F(x). the tail of F. Then the class of d.f.'s F for which the above

GP approximation holds includes all those satisfying
(1.4) F(u+xg(u))/F(u) = G(x) as u — Xp

for some function g(u) > O, some d.f. G and all 0 < x < Xp ({ ©). It is known
([6]) that any such G in (1.4) must be G.P. as in (1.1) for some a.f.

Note that (1.4) holds for all d.f.’s F of interest in extreme value theory
i.e. such that if M = max(X,.....X ). P{a (M -b ) < x} (= Fn(x/an+bn)) has a
non degenerate limit A(x). For example if G(x) = e X, (1.1) is a classical
domain of attraction criterion for a "Type I"” extreme value distribution
A(x) = exp(—e-x). If instead F has a regulary varying tail (1-F(ux))/(1-F(u))
—x %, a0, as u — ®, each x > 0, then (1.1) holds with G(x) = (l+x)-a.

g(u) = u, and A(x) is then "Type II" i.e. A(x) = exp(-x-a). x > 0.

Hence in a wide variety of cases of interest the distribution Fu(x) of
excesses (given by (1.2)) of the level u is approximately GP, Ga,B(x) in the
sense stated, where a is fixed but B can change with u. As discussed in [7]
this provides significant intuitive support for the POT model. Our purpose
here is to further justify the model by exhibiting it as the limit of point
processes of excesses of high levels, the limiting distribution of excess
values being shown to be GP, Ga.ﬁ(x) where now B as well as a, is independent
of u.

For clarity this will be shown for iid sequences in Section 2 and extended
to dependent (mixing) situations in Section 3. In the latter case high serial

correlation can cause clustering of exceedances of high levels and the peak




3
values are then defined to be the largest in each cluster. Two points worth
noting are (i) the dependence modifies the theory via the introduction of a
single parameter, the "extremal index" (essentially the inverse of mean cluster
size) and (ii) the GP form applies to the peak values but not necessarily to
other cluster properties such as their lengths. A corresponding theory will be

indicated in Section 3 for other such cases.

2. The iid case.

Let {un} be a sequence of levels such that
(2.1) n(l-F(un)) — 1 > 0.

Define point processes Nn to consist of the points i/n for which Xi > u . i.e.
the exceedance points normalized by 1/n. Nn is thus defined on the positive
real line but it will be convenient to restrict attention to the unit interval,
corresponding to exceedances among the n sample values Xl.....Xn. Hence Nn(B)
is defined for (Borel) subsets B C (0,1] by Nn(B) = #{i/n € B: Xi > un}.

It is trivial to show that under (2.1) that Nn d, N where N is a Poisson
Process on (0,1] with intensity 7. For if I = (a,b] C (0.1]. Nn(I) is binomial
with parameters [nb]-[na], pn=1-F(un) ([ ] denoting integer part) and np — T
so that

PN (1) = 1} = e ") [r(b-a)T7/rt = PIN(D) = 7).

Hence Nn(I) d, N(I) and by independence if Il""'I are disjoint

k

d
(Nn(Il)""Nn(Ik)) - (N(Il)"‘N(Ik))
which is sufficient ([2]) to show full weak convergence Nn d, N.

Now associate with each point of Nn (i/n such that Xi > un) the

corresponding excess value Xi-un to give the "point process N: of excesses".
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Technically perhaps N: should be regarded as a "marked point process” (or as an
atomic random measure) since the (Xi—un) are not necessarily integer valued but
it will be convenient (and legitimate) to call it a point process whose events
(at (i/n: X1 > un)) have (not necessarily integer) multiplicities (Xi-un).

Since, as above, the positions of the excesses converge to a Poisson
Process, it seems evident that one should expect any limit N* for N: to be a
compound Poisson process having events at Poisson points with intensity 7 and
(independent) multiplicities with some common d.f. G. Such a result may be
shown (cf. [1]) but here we give sufficient conditions for such convergence.
Here and below we write N = CP(7.G) to denote a Compound Poisson point process
whose Poisson events have intensity 7 with (not necessarily integer-valued)

multiplicities having d.f. G.

Theorem 2.1. Let Xi, i=1,2... be iid with d.f. F satisfying (1.4) for some g,

G, and let (un) be levels satisfying (2.1). Then anN: d, N*, CP(7.G) where T

is as in (2.1), G as in (1.4) and a = l/g(un).

Proof: If Gn(x) (= Fun(x/an)) denotes the conditional d.f. of an(Xl—un) given

X1 > u. then clearly
gexp{~sa_(X,~u_).} = F(u ) + F(u_ ) Sre %dc_(x).
n't"1 n’+ n n’ 0 n
But from (1.4), Gn(x) — G(x) and hence f: e_sxdGn(x) — ¢(s) = f:e-sxdG(x) S0

that if I = (a,b] C (0,1] contains m_ points i/n (mn ~ n(b-a))

m m
¢ "exp{-sa (X,-u ),} = [1-(/n)(1-$(s))(1+0(1))] "

_, o~T(b-a)(1-4(s))

-sN"(a.b]

which is the Laplace Transform e where N* is CP(7.G). Since N:(I) is
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the sum 3 (X.~u ), of m_1iid terms, it follows that a N*(I) d, N*(I). Hence
i/n€l i n'+ n nn

by independence
» : d
(anNn(Il)"'anNn(In)) - (Nn(Il)...Nn(Ik))

for any disjoint I.,...,I, so that anN: Q*,N* as required. 8]

1 k

Thus in the iid case the (normalized) point process anN: of excesses over
u has a Compound Poisson limit and may be regarded as approximately CP(T,G)
for large n. Note again that G is a GP distribution Ga B for some fixed a.f.

This provides a strong basis for the POT model in the iid case.

3. Stationary sequences

A stationary sequence Xl.X2.... can exhibit both "long range” and "local"
dependence between the Xi. Here the former, but not the latter, will be
restricted by a "mixing condition” which enables the collection of Xi's into
groups which are approximately independent but with possible high dependence
within groups. Strong mixing will suffice to restrict long range dependence.
However one may "tailor™ this to the problem at hand with a slightly weaker
restriction A(vn) defined for any sequence of constants v, as follows. For
1{j<k<n write Sjk(vn) = a((XS—vn)+: j¢s<k} and say that A(vn) holds if for
1¢&<n |P(ANB) - P(A)P(B)| < @, whenever A € "31.j(vn)' B € 51+e,n("n)' 1<{j<n-2

and a O for some en = o(n).

n

High local dependence is reflected in the presence of clustering of

exceedances of high levels. “Clusters” will be defined precisely below, but we
first note that for levels (un) satisfying (2.1) the mean size of a cluster
typically converges to a parameter whose inverse 6 is sometimes called the
"extremal index" of the sequence (Xi}. Specifically 6 is defined by the

property that if Mn = max(Xl.Xz.....Xn) and u satisfies (2.1) then
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(3.1) P(M_ < u) — e o,

0 being independent of . (For i.i.d. sequences 8 = 1). Such 8 exists under
general conditions (cf [4], Sec. 3.7)

Clusters of exceedances of high levels may be defined in various ways, the
most obvious being as runs of consecutive exceedances. However if A(vn) holds
for a given sequence {vn} of levels the following "block definition” is more
convenient (and often asymptotically equivalent to that using runs). Choose

integers kn~—4 o, kn = o(n), satisfying

(3.2) k (¢ , +&/n) —0.

.8
n

Write rn=[n/kn] and divide the integers (1...n) into consecutive blocks

Ji {(1—1)rn+1. (i—l)rn+2.....irn} lgiSkn

Jkn+1 {knrn+1, knrn+2....,n)

and regard the exceedances (if any) in a block as forming a cluster. The
choice of kn (or equivalently rn) is flexible, subject to the growth

restriction (3.2).

Obviously this block definition can count a run of consecutive exceedances as
two or more clusters, if the run straddles more than one block so that the
block definition is less natural in some cases. However it can be more
appropriate than the runs definition for sequences with high local variability.
In any case we use the block definition for its convenience. Further if the
block Ji contains exceedances the first point, (i-l)rn+1, of Ji will be
regarded as the location of the cluster in Ji'

Define now a point process Pn of normalized cluster positions, i.e.

consisting of the points {((i—l)rn+l)/n. 1 <i¢ knt M(Ji) > un) where M(E) is
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written for max{Xj: jeE}. Associate with each point ((1—1)rn+1)/n of Pn the
corresponding maximum excess M(Ji)—un = max{(Xj—un)+: je Ji}. giving the
(again technically "marked”) point process P: of peak excess values above the
level in the clusters. We show that a result like Theorem 2.1 holds in the
dependent case with P: replacing N:. In fact it may be shown (cf [5]) that for
i.i.d. sequences Nn and Pn are asymptotically equivalent in a strong sense as
also are N: and P: so that Pn and P: generalize Nn and N:.

It was shown in Section 1 that in the iid case the exceedance point
process Nn has a Poisson limit with intensity 7. This result is simply
generalized (cf. [1]) to show that under dependence Pn has a Poisson limit
(with intensity 61) whereas Nn itself has a Compound Poisson limit whose events
occur a* the positions of clusters (i.e. points of Pn). with multiplicities
given by (limiting) cluster sizes. However the (limiting) distribution for
multiplicities need not have a GP form and need not be totally determined by
the (tail of the) marginal d.f. F of the Xi. On the other hand it will be
shown below that P has a CP(67.G) distributional limit where G is obtained
from the tail of F via (1.4). Thus G has GP form and the dependence influences
the limit only through the factor 8 in the intensity of the underlying Poisson
Process.

The Compound Poisson limit for P: will be obtnined by considering the
asymptotic behavior of the maximum in a cluster and showing that the clusters
are essentially independent. The specific basic results needed are contained

in the following lemms.

Lemma 3.1. Let {Xn) be stationary with extremal index 6 > O and marginal d.f.
F satisfying (1.4), and let A(vn) hold with vn=un+xg(un). each x > O, where u
satisfies (2.1). Let {k_} satisfy (3.2) and write a_ = (g(u )", Then (with

ro= [n/kn]). as n — ®
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(1) Pla (M -u) > x} ™ ﬁ—*&(x). x20
n n

(11) P{a_(M_ -u ) < xlmr >u } — G(x)
n n

k
(111) [Zexp{-sa (M_ -u ) }] " — exp{-67(1-¢(s))}
n

where ¢(s) = Ig e “XdG(x)

Proof: Since n[l—F(un+a;1x)] ~ Tf(un+xg(un))/fkun) — 1G(x) and {Xn} has

extremal index 6, it follows that
-1 -
P(Mn Suta x} = exp(-67G(x)).

But it follows in a standard way from the mixing condition A(vn) (cf. [1, Lemma

k k
2.3]) that P{MnSVn} - P n{Mrngvn} - 0 so that P n(HrnSun+a;1x} — exp(-67G(x))

from which (i) readily follows. The left hand side of (ii) is

-1 6T =+ 0
1 - P{Mrn>un+an x}/P{Mrn>un} =1 - K G(x)/ﬁ (1+0(1))

by (i). so that (ii) follows. Finally (iii) follows by the first calculation

of Theorem 2.1 with Hr replacing Xi. using (ii). o
n

The main result now follows in a similar way to Theorem 2.1 on using

approximate independence between the clusters.

Theorem 3.2. Let {Xn} be stationary with extremal index 6 > 0, and marginal
d.f F satisfying (1.4), and let A(vn) hold with voEu + xg(un) each x > O,
where u satisfies (2.1). Let kn — o satisfy (3.2), r = [n/kn] and

a = (g(un))_l. Then the point process P: of peak values above u, satisfies

anP: d, P’ where P~ is CP(67.G) and G is as in (1.4).
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Proof: Let I be a subinterval of (0,1] and Ji = {(i-l)rn+1.....irn} as defined
above, 1 ¢ 1 ¢ kn. Then it follows from the mixing conditions along the same
lines as Lemma 2.2 of [3] (or Lemma 2.2 of [1]) that

texp{-sa P} (1)} -{i:JnCI}sexp(-sanP:(Ji)}~—» 0
i

as n — @, so that

. k m(1)(1+0(1))
exp(-sa P (1)} = [Sexp(-sa, (¥, —u,),}]

— exp{-6mm(I)(1-4(s))}

by Lemma 3.1, where ¢(s) = Iz e °XdG(x). Hence anP:(I) d, P*(I) where P" is

CP(61,G) on (0,1]. Now if I_,...,I are disjoint subintervals of (0,1] it

1 k
follows also as in Lemma 2.2 of [3] (or Lemma 2.2 of [1]) that

k ” k
zexp{—an jzlsan(Ij)} - g

2%
j_léexp{-anPn(Ij)} — 0

from which it follows that
3 3¢ d ) 3¢
(anPn(Il)...anPn(Ik)) — (P (Il)...P (Ik))
and hence that anP: gﬂ P*. a

Finally we reiterate that this result is one of many which can be obtained
involving different aspects of cluster structure. For example the Compound
Poisson limit for Nn was cited above, the multiplicities corresponding to
cluster sizes. More complicated functions - such as the sum of powers of
excess values in a cluster -~ may also be considered and will lead to Compound
Poisson limits. Such cases may be useful in applications where damage from

high levels (e.g. high pollution episodes) may be modeled as a specific
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function of the excess values. However the case of (excess) peak values in a
cluster is especially important (e.g. in describing severe floods, where damage
can well be a function of flood level). Theorem 3.2 establishing the POT
approximation is particularly useful since the multiplicity distribution then

depends only on the marginal d.f. F and moreover is known to have GP form.
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